首页> 外文OA文献 >Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
【2h】

Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

机译:利用放射性同位素动力系统废热进行航天器热管理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of ~6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of waste heat utilization in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander). The advantages associated with the SRG110 as they relate to ease of assembly, less complex interfaces, and overall mass savings for a spacecraft will be highlighted.
机译:使用放射性同位素动力系统(RPS)进行深空或行星表面任务的一个好处是可以随时利用的废热可用于许多有益的目的,包括:将电子组件保持在受控的温度范围内,对推进罐进行加热,以及移动性执行器,并保持液体推进剂高于其冻结温度。由于热电转换技术效率低下,以前使用放射​​性同位素热电发生器(RTG)的任务耗散了大量废热。下一代RPS,例如110瓦斯特林放射性同位素发生器(SRG110),将具有更高的转换效率,从而在较低的温度下拒绝较少的废热,并且可能需要将废热传递到航天器的替代方法。效率约为6%至7%的RTG在200°C的较高排热温度下排掉其废热。但是,将热量传递到航天器的内部部件需要大型且笨重的散热器热交换器。同时,必须保护敏感的航天器仪器免受RTG的热辐射。 SRG110的效率约为22%,标称外壳表面温度为50 C,可以很容易地直接通过热管,导热带或流体回路传递可用的废热。与SRG110相关的较低温度避免了其他科学组件过热的机会,从而无需隔热罩。当为特定任务定位发生器时,这为航天器设计人员提供了更大的灵活性。高效系统的一个常见误解是,没有足够的废热用于航天器的热管理。本文将消除这种误解,并研究在航天器热管理中使用高效SRG110的方法,并概述一些概念性任务(月球车,火星车和泰坦·兰德)中潜在的余热利用方法。与SRG110相关的优势将突出显示,因为它们具有易于组装,接口复杂性降低以及航天器整体节省质量的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号